Physikalische und mathematische Grundlagen zu den Vorlesungen über "Pneumatische Sensoren" im Modul "Sensorik Vertiefung"

von

Prof. Dipl.-Phys. Dipl.-Ing. Edmund R. Schießle

15 Pneumatische Sensoren

Allgemeine physikalische und technische Betrachtungen

Pneumatik stammt von dem griechischen Wort «pneuma» und bedeutet Wind und Atem.

Pneumatik ist der Einsatz von Druckluft in Wissenschaft und Technik.
Der <i>Energieträger</i> für die pneumatische Kraftübertragung und der <i>Signalträger</i> für die Sensorik die Luft ist durch <i>drei thermodynamische Zustandsgrößen</i> gekennzeichnet: □Druck, □Volumen, □Temperatur
Mathematischer Zusammenhang der thermodynamischen Zustandsgrößen wird beschrieben durch: \square Das Gesetz von Boyle- Mariotte Für $T = \text{konstant gilt pV} = \text{konstant oder } p_1 V_1 = p_2 V_2$
\square Das Gesetz von Gay- Lyssac Für $p=$ konstant gilt $V/T=$ konstant oder $V_1/T_1=V_2/T_2$
\square Physikalischer Normalzustand von Temperatur und Druck $T_n = 273K = 0^{\circ}C$ und $p_n = 1,011325bar$
Industriell wird die Druckluft als Energieträger in die Pneumatik und als Informationsträger in der Messtechnik und Sensorik seit Anfang des 20. Jahrhunderts angewandt.
<i>Pneumatische Sensoren</i> sind staudruckabhängige, technische Konstruktionen, die über eine berührungsfreie Abtastung durch Luftstrahldruckänderungen ein Messobjekt abtasten können.
Tastabstand (Messbereich) von 0,1 bis 100 mm reicht.
Ein pneumatischer Sensor besteht aus □ pneumatischen Senderdüse □ pneumatischen Empfängerdüse □ pneumatischen Strecke (Luftspalt) □ pneumatischen Druckverstärker (nur wenn nötig) □ elektropneumatischer Wandler
Vorteile Pneumatische Sensorprinzipien haben gegenüber anderen Sensorprinzipien □ Funktionssicherheit bei Schmutzanfall □ hohe Umgebungstemperaturen □ elektromagnetische Störungen □ Einflüsse durch Schallwellen □ Arbeiten in völliger Dunkelheit □ Abtastung von lichtdurchlässigen Messobjekten □ Arbeiten in explosionsgeschützten Räumen geht

Sensorprinzipien und Elementarsensoren
Besprochen werden grundsätzliche, qualitative Grundlagen von pneumatischen
Elementarsensoren. Man unterscheidet nach pneumatischen Sensorprinzipen 3 pneumatische
Sensortypen:
☐ pneumatische Staudrucksensoren (Staudüsen)
☐ pneumatische Ringstrahlsensoren (Ringstrahldüsen)
□ pneumatische Luftschrankensensoren (Luftschranken)